Machine Learning Approaches to Shallow Discourse Parsing: A Literature Review

نویسنده

  • Alexander Clark
چکیده

This document reviews the literature on shallow discourse parsing, in particular the use of machine learning techniques. This is deliverable Y1.M6 of the Discourse Parsing White Paper which is part of the MDM IP of the IM2 project.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The CLaC Discourse Parser at CoNLL-2016

This paper describes our submission (CLaC) to the CoNLL-2016 shared task on shallow discourse parsing. We used two complementary approaches for the task. A standard machine learning approach for the parsing of explicit relations, and a deep learning approach for non-explicit relations. Overall, our parser achieves an F1score of 0.2106 on the identification of discourse relations (0.3110 for exp...

متن کامل

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Introduction to Special Issue on Machine Learning Approaches to Shallow Parsing

This article introduces the problem of partial or shallow parsing (assigning partial syntactic structure to sentences) and explains why it is an important natural language processing (NLP) task. The complexity of the task makes Machine Learning an attractive option in comparison to the handcrafting of rules. On the other hand, because of the same task complexity, shallow parsing makes an excell...

متن کامل

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

The CLaC Discourse Parser at CoNLL-2015

This paper describes our submission (kosseim15) to the CoNLL-2015 shared task on shallow discourse parsing. We used the UIMA framework to develop our parser and used ClearTK to add machine learning functionality to the UIMA framework. Overall, our parser achieves a result of 17.3 F1 on the identification of discourse relations on the blind CoNLL-2015 test set, ranking in sixth place.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003